
Seize control of your network with Ryu

Ewen McNeill

<ewen@naos.co.nz>

Naos Ltd

2014-09-13 — Kiwi PyCon 2014

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 1 / 43

Outline

1 Introduction

Administrivia

What is Ryu?

2 Getting Started

Installing Ryu

Development environment

Ryu applications

3 Controlling your network

OpenFlow model

Example MiniNet network topology

Simple worked example

4 Summary

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 2 / 43

Administrivia

About the speaker
◮ Freelance consultant in Wellington through Naos Ltd
◮ Works at intersection of Networking, Sysadmin and Development
◮ Used Python for about 18 months (be gentle!)

Questions Policy
◮ If it is about the current slide, raise your hand.
◮ Please ask more general questions at the end.

Slides:

http://www.naos.co.nz/talks/seize-control-with-ryu/

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 3 / 43

http://www.naos.co.nz/talks/seize-control-with-ryu/

Ryu

Ryu is an OpenFlow Controller written in

Python, which can be used to create a

Software Defined Network

http://osrg.github.io/ryu/

Apache 2.0 license

Originally a project of NTT Communications (Japan)

“Ryu” (pronounced “ree-yooh”) is Japanese for “flow”

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 4 / 43

http://osrg.github.io/ryu/

Software Defined Networking – 1/4

Software Defined Networking (“SDN”)

. . . is a buzzword

All modern networking is “Software Defined”

Contrast with “Hardware” defined network

ie, external switch or router appliance

Which traditionally has proprietary network stack

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 5 / 43

Software Defined Networking – 2/4

Modern hardware switch/router:

Supervisor CPU

Planning

happens here

Forwarding

happens here

Integrated Solution

Hardware ASICs

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 6 / 43

Software Defined Networking – 3/4

OpenFlow Agent

Linux

Ryu

Planning

happens here

Forwarding

happens here

Hardware ASICs

Software Defined Networking is the radical concept that
the supervisor CPU and the forwarding hardware do not
have to be in the same box, or be from the same vendor.

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 7 / 43

Software Defined Networking – 4/4

1:1 hardware:supervisor CPU is optional too :-)

Linux

OpenFlow Agent

Forwarding
happens here

Hardware ASICs

OpenFlow Agent

Forwarding
happens here

Hardware ASICs

OpenFlow Agent

Forwarding
happens here

Hardware ASICs

OpenFlow Agent

Forwarding
happens here

Hardware ASICs

Ryu

Planning
happens here

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 8 / 43

OpenFlow

OpenFlow is a standarised protocol for

communication between a SDN Controller and

separate forwarding hardware.

OpenFlow 1.0: Dec 2009: IPv4 only, limited features

OpenFlow 1.3: Jun 2012: IPv4 and IPv6, tables, etc

OpenFlow 1.4: Oct 2013: not widely implemented yet

TCP/6633 (older convention)

TCP/6653 (standardised 2013-07-18)

TLS recommended since OpenFlow 1.3

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 9 / 43

Ryu revisited

Ryu is an OpenFlow Controller written in

Python, which can be used to create a

Software Defined Network

Lets you write software

To control network forwarding hardware

Using the full power of Python

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 10 / 43

Installing Ryu

Ryu is on PyPI:

pip install ryu

From git source:

git clone git://github.com/osrg/ryu.git

cd ryu; python ./setup.py install

Dependencies:

Many modern Python dependencies

Most tested with Python 2.7, on Linux

From Ubuntu Linux 14.04 packages:

http://ewen.mcneill.gen.nz/blog/entry/2014-08-31-ryu-on-ubuntu-14-04/

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 11 / 43

http://ewen.mcneill.gen.nz/blog/entry/2014-08-31-ryu-on-ubuntu-14-04/

Development environment

Development environment needs:

ryu-manager and your Ryu application

an OpenFlow compatible switch

two or more systems to generate traffic

way to see OpenFlow messages

Modern Linux includes Open vSwitch

http://openvswitch.org/

replacement for Linux software bridge (brctl, etc)

supports OpenFlow 1.0/1.3/1.4

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 12 / 43

http://openvswitch.org/

Mininet

Mininet is a Python project that provides a
realistic virtual network.

http://mininet.org/

Provides Python classes wrapping Linux networking

... and Linux container features

Wire up useful test network, including OpenFlow switch,

and test systems, using Python objects

Installation:

Install as test VM, from Linux distribution, or from git

http://mininet.org/download/

Mininet 2.10 packaged in Ubuntu Linux 14.04 LTS

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 13 / 43

http://mininet.org/
http://mininet.org/download/
http://ewen.mcneill.gen.nz/blog/entry/2014-07-17-mininet-on-ubuntu-14.04-in-kvm/

Wireshark

Wireshark:

https://www.wireshark.org/

v1.12 (released 2014-07-31) has OpenFlow dissector

Probably need to build from source or use upstream binary

. . . unless you run bleeding edge distro

Usage:

tshark -Ttext -d tcp.port==6633,openflow -O openflow_v4 -P -tad

http://wiki.wireshark.org/OpenFlow

$HOME/.wireshark/preferences:
◮ openflow.tcp.port: 6633 (historical convention)
◮ openflow.tcp.port: 6653 (standardised)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 14 / 43

https://www.wireshark.org/
http://wiki.wireshark.org/OpenFlow
http://ewen.mcneill.gen.nz/blog/entry/2014-07-17-mininet-on-ubuntu-14.04-in-kvm/
http://wiki.wireshark.org/OpenFlow

Ryu applications

A Ryu application:

is a Python class (subclass of ryu.base.app_manager.RyuApp)

that is event driven

ryu-manager can run multiple applications at once

one light weight thread per app

apps can pass messages to each other, to cooperate

For more detail see:

Documentation:

http://ryu.readthedocs.org/en/latest/

Ryu book (free PDF/eBook/HTML, with 10 worked examples):

http://osrg.github.io/ryu/resources.html#books

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 15 / 43

http://ryu.readthedocs.org/en/latest/
http://osrg.github.io/ryu/resources.html#books

Minimal Ryu application (kiwipycon1.py)

from ryu.base import app_manager

class KiwiPycon(app_manager.RyuApp):

def __init__(self, *args, **kwargs):

super(KiwiPycon, self).__init__(*args, **kwargs)

Running applications (with default config):

ryu-manager ./kiwipycon1.py

May have to override default config (eg, avoid default log to

/var/log/ryu/ryu.log; see eg, /etc/ryu/ryu.conf):

touch ryu.conf

ryu-manager --config-file ./ryu.conf ./kiwipycon1.py

(and may have to stop Ryu service if installed from packages)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 16 / 43

Minimal Ryu OpenFlow application (kiwipycon2.py)

from ryu.base import app_manager

from ryu.controller import ofp_event

from ryu.controller.handler import MAIN_DISPATCHER

from ryu.controller.handler import set_ev_cls

from ryu.ofproto import ofproto_v1_3

class KiwiPycon(app_manager.RyuApp):

OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] #OpenFlow 1.3

def __init__(self, *args, **kwargs):

super(KiwiPycon, self).__init__(*args, **kwargs)

@set_ev_cls(ofp_event.EventOFPStateChange,

MAIN_DISPATCHER)

def new_connection(self, ev):

dp = ev.datapath

self.logger.info("Switch connected (id=%s)" % dp.id)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 17 / 43

OpenFlow “flows”

Similar model to firewall ACL

Designed to be implemented in hardware ASIC

Stateless (except new flows created by controller)

Openflow “flows” consist of:
◮ A priority (higher priority wins)
◮ Timeout options (clock time, since last matched)
◮ Cookie (optional tag)
◮ Match pattern (with wildcards)
◮ Instructions (OpenFlow 1.2+)

Arranged into “tables” (OpenFlow 1.2+)

Processed as a pipeline, starting table 0

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 18 / 43

OpenFlow matches

Model is a set of wildcarded matches:
◮ Layer 1: input port
◮ Layer 2: src MAC, dst MAC, Ethernet frame type, ...
◮ Layer 3: src IP, dst IP, ...
◮ Layer 4: src TCP port, dst TCP port, ICMP type, ...

Hardware ASIC may have limits on combinations

Combinations sometimes configurable, sometimes not

Software implementations (eg, Open vSwitch) usually flexible

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 19 / 43

OpenFlow Instructions

OpenFlow 1.2+ only

OpenFlow 1.0 only had actions

Instructions:
◮ Goto table N
◮ Write Action
◮ Apply Action immediately (optional)
◮ Clear Actions
◮ Write Metadata (for later matching)
◮ Apply meter (rate limiting)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 20 / 43

OpenFlow Actions

Output frame to port(s)
◮ Specific physical port
◮ ALL ports
◮ To controller
◮ In port (back out port received on)
◮ Normal/Flood

Push/Pop VLAN tags

Push/Pop MPLS tags

Set queue

(Many of these are OpenFlow 1.2+)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 21 / 43

Example network

Switch: s1

Ryu

h1: 172.31.1.1/24 h1: 172.31.1.2/24

Two endpoints (h1 and h2)

Separated by an OpenFlow capable switch

Controlled by a Ryu application

MiniNet code for example network:

http://www.naos.co.nz/talks/seize-control-with-ryu/kiwipycon-mininet.py

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 22 / 43

http://www.naos.co.nz/talks/seize-control-with-ryu/kiwipycon-mininet.py

Example network – Mininet 1/3

#! /usr/bin/python

Simple Mininet network: host -- switch -- host

from mininet.net import Mininet

from mininet.node import OVSSwitch, RemoteController

from mininet.topo import Topo

from mininet.log import setLogLevel

from mininet.cli import CLI

from mininet.util import run

setLogLevel(’info’)

#setLogLevel(’debug’) # For diagnostics

... (continued next slide) ...

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 23 / 43

Example network – Mininet 2/3

... (continued from previous slide) ...

Implement host - switch - host topology

class KiwiPycon2014(Topo):

def __init__(self):

super(KiwiPycon2014, self).__init__()

leftHost = self.addHost(’h1’,ip=’172.31.1.1/24’)

rightHost = self.addHost(’h2’,ip=’172.31.1.2/24’)

oneSwitch = self.addSwitch(

’s1’, dpid=’0000000000000099’,

listenPort=6634)

self.addLink(leftHost, oneSwitch)

self.addLink(oneSwitch, rightHost)

... (continued next slide) ...

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 24 / 43

Example network – Mininet 3/3

... (continued from previous slide) ...

ryu = RemoteController(’ryu’, ip=’127.0.0.1’, port=6633)

net = Mininet(topo=KiwiPycon2014(), switch=OVSSwitch,

build=False)

net.addController(ryu)

net.build()

net.start()

Explicitly enable OpenFlow 1.3, then run the network

run("ovs-vsctl set bridge s1 protocols=OpenFlow13")

CLI(net)

net.stop()

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 25 / 43

Example behaviour

Switch: s1

Ryu

h1: 172.31.1.1/24 h1: 172.31.1.2/24
1

2

3 4

4

5

h1 wants to communicate with h2

OpenFlow switch stops h1 talking to h2 (1)

Until a magic unlock token is seen (2, 3, 4)

Then h1 is allowed to communicate with h2 (5,6)

No assistance required from h1 or h2

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 26 / 43

Ryu/OpenFlow requirements

1 IPv4 traffic from h1 should be blocked by default

2 Need a way to allow traffic (overriding default)
3 Need a way to trigger “allow traffic”:

◮ UDP packet
◮ Containing “xyzzy”

4 Simplifying assumptions:
◮ ARP should be unrestricted
◮ h2 only responds, never initiates (stealth!)
◮ IPv4 only (IPv6 is exercise for the reader!)
◮ Flood traffic (for simplicity)
◮ (Mostly) ignore race conditions, errors

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 27 / 43

0. On-connect policy

... (imagine Ryu application boilerplate here) ...

class KiwiPycon(app_manager.RyuApp):

Internal constants for ports, priority, etc

MAGIC_COOKIE = bytearray(b"xyzzy")

(PORT_H1, PORT_H2) = (1,2)

(PRI_LOW, PRI_MID, PRI_HIGH) = (20, 30, 40)

@set_ev_cls(ofp_event.EventOFPStateChange,

MAIN_DISPATCHER)

def new_connection(self, ev):

dp = ev.datapath

self.logger.info("Switch connected (id=%s)" % dp.id)

self.block_traffic_by_default(dp)

self.flood_all_arp(dp)

self.add_notify_on_udp_from_host_1(dp)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 28 / 43

1. Block traffic from h1 by default

def block_traffic_by_default(self, dp):

ofp = dp.ofproto

parser = dp.ofproto_parser

self.logger.info("Clearing existing flows")

self.del_flows(dp)

self.logger.info("Blocking traffic from h1’s port")

match = parser.OFPMatch(in_port=KiwiPycon.PORT_H1)

self.add_flow(dp, KiwiPycon.PRI_LOW, match, None)

self.logger.info("Allowing traffic from h2’s port")

match = parser.OFPMatch(in_port=KiwiPycon.PORT_H2)

actions = [parser.OFPActionOutput(ofp.OFPP_FLOOD,

ofp.OFPCML_NO_BUFFER)]

self.add_flow(dp, KiwiPycon.PRI_LOW, match, actions)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 29 / 43

2. Allow all ARP

from ryu.ofproto import ofproto_v1_3, ether, inet

...

def flood_all_arp(self, dp):

ofp = dp.ofproto

parser = dp.ofproto_parser

self.logger.info("Permitting ARP, by flooding")

match = parser.OFPMatch(eth_type=ether.ETH_TYPE_ARP)

actions = [parser.OFPActionOutput(ofp.OFPP_FLOOD,

ofp.OFPCML_NO_BUFFER)]

self.add_flow(dp, KiwiPycon.PRI_MID,

match, actions)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 30 / 43

3. Send us UDP so we can look for cookie”

def add_notify_on_udp_from_host_1(self, dp):

ofp = dp.ofproto

parser = dp.ofproto_parser

self.logger.info("Request notify on UDP from h1")

match = parser.OFPMatch(in_port = KiwiPycon.PORT_H1,

eth_type = ether.ETH_TYPE_IP,

ip_proto = inet.IPPROTO_UDP)

actions = [parser.OFPActionOutput(

ofp.OFPP_CONTROLLER,

ofp.OFPCML_NO_BUFFER)]

self.add_flow(dp, KiwiPycon.PRI_MID, match, actions)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 31 / 43

4. Look at traffic we are sent

from ryu.lib.packet import packet, ethernet

#...

@set_ev_cls(ofp_event.EventOFPPacketIn,

MAIN_DISPATCHER)

def handle_packet(self, ev):

pkt = packet.Packet(ev.msg.data)

eth = pkt.get_protocol(ethernet.ethernet)

self.logger.info("UDP received from %s" % eth.src)

if ev.msg.data.find(KiwiPycon.MAGIC_COOKIE) >= 0:

self.logger.info("Magic cookie found from %s" \

% eth.src)

self.permit_traffic_from_mac(ev.msg.datapath,

eth.src)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 32 / 43

5. Permit traffic by MAC (if we found cookie)

def permit_traffic_from_mac(self, dp, src_mac):

ofp = dp.ofproto

parser = dp.ofproto_parser

self.logger.info("Permitting traffic from %s" \

% src_mac)

match = parser.OFPMatch(eth_src = src_mac)

actions = [parser.OFPActionOutput(

ofp.OFPP_FLOOD,

ofp.OFPCML_NO_BUFFER)]

self.add_flow(dp, KiwiPycon.PRI_HIGH,

match, actions)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 33 / 43

Util: add flows helper

def add_flow(self, dp, priority, match, actions):

ofp = dp.ofproto

parser = dp.ofproto_parser

inst = []

if actions:

inst = [parser.OFPInstructionActions(

ofp.OFPIT_APPLY_ACTIONS,

actions)]

mod = parser.OFPFlowMod(datapath=dp, table_id=0,

priority=priority,

match=match,

instructions=inst)

dp.set_xid(mod) # Preallocate transaction ID

dp.send_msg(mod)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 34 / 43

Util: delete all flows helper

def del_flows(self, dp):

ofp = dp.ofproto

parser = dp.ofproto_parser

wildcard_match = parser.OFPMatch()

instructions = []

mod = parser.OFPFlowMod(datapath=dp, table_id=0,

command = ofp.OFPFC_DELETE,

out_port = ofp.OFPP_ANY,

out_group = ofp.OFPP_ANY,

match = wildcard_match,

instructions=instructions)

dp.send_msg(mod)

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 35 / 43

Terminal 1: Running Mininet

ewen@mininet:~$ sudo ./kiwipycon-mininet.py

[sudo] password for ewen:

Unable to contact the remote controller at 127.0.0.1:6633

*** Creating network

*** Adding hosts:

h1 h2

*** Adding switches:

s1

*** Adding links:

(h1, s1) (h2, s1)

*** Configuring hosts

h1 h2

*** Starting controller

*** Starting 1 switches

s1

*** Starting CLI:

mininet>

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 36 / 43

Terminal 2: Running Ryu

ewen@mininet:~$ ryu-manager \

> --config-file ./ryu.conf kiwipycon3.py

loading app kiwipycon3.py

loading app ryu.controller.ofp_handler

instantiating app kiwipycon3.py of KiwiPycon

instantiating app ryu.controller.ofp_handler of OFPHandler

Switch connected (id=153)

Clearing existing flows

Blocking traffic from h1’s port by default

Allowing traffic from h2’s port by default

Permitting ARP, by flooding

Request notify on UDP from h1

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 37 / 43

Test ping h1 to h2

mininet> h1 ping -c 5 h1

PING 172.31.1.1 (172.31.1.1) 56(84) bytes of data.

64 bytes from 172.31.1.1: icmp_seq=1 ttl=64 time=0.013 ms

64 bytes from 172.31.1.1: icmp_seq=2 ttl=64 time=0.028 ms

64 bytes from 172.31.1.1: icmp_seq=3 ttl=64 time=0.030 ms

64 bytes from 172.31.1.1: icmp_seq=4 ttl=64 time=0.035 ms

64 bytes from 172.31.1.1: icmp_seq=5 ttl=64 time=0.034 ms

--- 172.31.1.1 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3998ms

rtt min/avg/max/mdev = 0.013/0.028/0.035/0.007 ms

mininet> h1 ping -c 5 h2

PING 172.31.1.2 (172.31.1.2) 56(84) bytes of data.

--- 172.31.1.2 ping statistics ---

5 packets transmitted, 0 received, 100% packet loss, time 4001ms

mininet>

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 38 / 43

Ready to knock? Turn the key...

In MiniNet:

mininet> h1 dig @172.31.1.2 +time=1 +tries=1 +short xyzzy.example.com

;; connection timed out; no servers could be reached

mininet>

Ryu application responds:

UDP received from 4e:19:42:3f:41:b5

Magic cookie found from 4e:19:42:3f:41:b5

Permitting traffic from 4e:19:42:3f:41:b5

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 39 / 43

It’s Play School

mininet> h1 ping -c 5 h2

PING 172.31.1.2 (172.31.1.2) 56(84) bytes of data.

64 bytes from 172.31.1.2: icmp_seq=1 ttl=64 time=0.283 ms

64 bytes from 172.31.1.2: icmp_seq=2 ttl=64 time=0.045 ms

64 bytes from 172.31.1.2: icmp_seq=3 ttl=64 time=0.052 ms

64 bytes from 172.31.1.2: icmp_seq=4 ttl=64 time=0.053 ms

64 bytes from 172.31.1.2: icmp_seq=5 ttl=64 time=0.053 ms

--- 172.31.1.2 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4000ms

rtt min/avg/max/mdev = 0.045/0.097/0.283/0.093 ms

mininet>

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 40 / 43

Flows: before we unlocked...

ewen@mininet:~$ ovs-ofctl -O OpenFlow13 dump-flows tcp:127.0.0.1:6634

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=2.628s, table=0, n_packets=0, n_bytes=0,

priority=30,arp actions=FLOOD

cookie=0x0, duration=2.628s, table=0, n_packets=0, n_bytes=0,

priority=20,in_port=1 actions=drop

cookie=0x0, duration=2.628s, table=0, n_packets=0, n_bytes=0,

priority=20,in_port=2 actions=FLOOD

cookie=0x0, duration=2.628s, table=0, n_packets=0, n_bytes=0,

priority=30,udp,in_port=1 actions=CONTROLLER:65535

ewen@mininet:~$

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 41 / 43

Flows: ... and after

ewen@mininet:~$ ovs-ofctl -O OpenFlow13 dump-flows tcp:127.0.0.1:6634

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=130.113s, table=0, n_packets=2, n_bytes=84,

priority=30,arp actions=FLOOD

cookie=0x0, duration=130.113s, table=0, n_packets=0, n_bytes=0,

priority=20,in_port=1 actions=drop

cookie=0x0, duration=130.113s, table=0, n_packets=5, n_bytes=490,

priority=20,in_port=2 actions=FLOOD

cookie=0x0, duration=130.113s, table=0, n_packets=1, n_bytes=88,

priority=30,udp,in_port=1 actions=CONTROLLER:65535

cookie=0x0, duration=109.593s, table=0, n_packets=7, n_bytes=574,

priority=40,dl_src=4e:19:42:3f:41:b5 actions=FLOOD

ewen@mininet:~$

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 42 / 43

That’s All Folks!

Ryu and OpenFlow:

Flexibility of Python, speed of hardware

Mininet lets you make test networks in Python

Wireshark invaluable for seeing interactions

Questions?

Slides:

http://www.naos.co.nz/talks/seize-control-with-ryu/

Examples (in same directory):

kiwipycon-mininet.py

kiwipycon3.py

Ewen McNeill (Naos Ltd) Seize control of your network with Ryu Kiwi PyCon 2014 43 / 43

http://www.naos.co.nz/talks/seize-control-with-ryu/
http://www.naos.co.nz/talks/seize-control-with-ryu/kiwipycon-mininet.py
http://www.naos.co.nz/talks/seize-control-with-ryu/kiwipycon3.py

	Introduction
	Administrivia
	What is Ryu?

	Getting Started
	Installing Ryu
	Development environment
	Ryu applications

	Controlling your network
	OpenFlow model
	Example MiniNet network topology
	Simple worked example

	Summary

